首頁 > 網路資源 > 大同大學數位論文系統

博碩士論文 etd-0701105-132715 詳細資訊


姓名 高維鑫 (Wei-Hsing Kao) 電子郵件信箱 aak123@ms26.hinet.net
系所 生物工程學系(所) (Bioengineering)
學位 碩士 (Master) 學年 / 學期 93 學年第 2 學期
論文名稱(中) 家用日光燈照射二氧化鈦塗膜的殺菌作用
論文名稱(英) Bacterial Inactivation By Titanium Oxide Contained Coating Under Household Fluorescent Light Irradiation
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內外完全公開
論文種類 碩士論文
論文語文別 / 頁數 英文 / 56
統計 已被瀏覽 3880 次,被下載 1536 次
關鍵字(中)
  • 二氧化鈦
  • 光觸媒反應
  • 殺菌效果
  • 關鍵字(英)
  • Titanium
  • Photocatalysis
  • Bactericidal efficacy
  • 摘要(中) 在淨化水和空氣方面,使用二氧化鈦光觸媒這個材料是個值得注意且可利用的方法。當二氧化鈦表面受波長低於385nm以下的紫外光照射時會產生強大的氧化能力。在有水和氧存在的條件下,二氧化鈦可藉由紫外線(UVA)照射產生高氧化力的氫氧自由基和超氧自由基。這些自由基可攻擊細菌,造成細菌的死亡,因此可防止細菌的污染。本實驗採用商業用二氧化鈦塗膜在家用日光燈照射下,評估光反應殺菌的效果。腸球菌(E. faecium)、金黃葡萄球菌(S. aureus) 、大腸菌(E. coli)、 綠膿菌(. aeruginosa) 、白色念珠菌(C. albicans) 用於本實驗,將這幾種病原菌懸浮於含有4% (w/v)甘油的磷酸緩衝生理食鹽水中,然後塗佈於二氧化鈦塗膜上。在照射90分鐘期間,細菌存活數的衰減符合一級動力學。以小時-1記錄這些菌株的反應速率常數k值(空白試驗/TiO2)分別是0.193/1.760, 1.407/1.973, 0.309/2.613, 0.847/2.573 以及1.220/2.107。二氧化鈦顆粒大小對殺菌效果亦有影響。二氧化鈦顆粒越小,對於腸球菌的殺菌效果越好。最後,並且比較日光燈和紫外燈照射下,二氧化鈦塗膜的殺菌效果。
    摘要(英) Titanium dioxide (TiO2) photocatalysts have attracted great attention as alternative concept to aid in the purification of water and air. TiO2 photocatalysts generate free radicals when illuminated by lights having wavelength shorter than 385 nm. These radicals are able to attack bacteria, and may therefore be efficacious in reducing bacterial pollution. In this study, a highly sensitive method for the evaluation of the photoinduced disinfection of a commercial TiO2-contained coating under a household fluorescent light irradiation was developed. Enterococcus faecium, Staphylococcus aureus, Pseudomonas aeruginosa, E.coli, and Candida albicans were suspended in 4% (w/v) glycerol in PBS and smeared on a surface containing TiO2. During irradiation for up to 90 min the decay of microbial viability nearly followed the first order kinetics. The rate constant k (blank/TiO2) in h-1 for these strains were 0.193/1.760, 1.407/1.973, 0.309/2.613, 0.847/2.573 and 1.220/2.107, respectively. The bactericidal effect of TiO2 in different particle size was also investigated. As the TiO2 particle decreased in size, bactericidal effect increased. Furthermore, the TiO2 coatings irradiated by the household fluorescent light and UVA were compared in bactericidal efficacy against S. aureus.
    論文目次 TABLES OF CONTENTS
    ABSTRACT……….……………….………………………………….…i
    中文摘要…….……………...............…………………………………... ii
    TABLE OF CONTENTS….……………......…….…………..………... iii
    LIST OF FIGURES………………….......………………..………….….vi
    LIST OF TABLES……………….......…………………….…………. viii
    CHAPTER
    I  INTRODUCTION.……………...…….................…………….1
      II  LITERATURE REVIEW….…..…..………………………….8
    2.1 Introduction of Photocatalysis…..........................................8
       2.2 Mode of action of TiO2…………………………………....9
         2.2.1 The reactive species …………………………………9
         2.2.2 the Fenton reaction………………………..………...10
         2.2.3 Haber-Weiss reaction…………………………….…11
       2.3 Structure of Target Microorganisms………………………11
          2.3.1 Bacteria…………………………………………..…11
          2.3.2 Viruse……………………………………………….13
        2.4 Mechanism of cell killing…………………………….....14
         2.4.1 The oxidation of coenzyme A (CoA)……………...14
         2.4.2 The disruption of the cell wall and cell membrane…
            …………………………………………………….14
         2.4.3. The damage of DNA and RNA…………………...17
        2.5 TiO2 fixed on glass……...…...………….…………...…..17
        2.6 The application of photocatalyst………………………...18
       2.7 Visible light photocatalysis………………………………20
        2.8 TiO2 modification………………………………………..21
       2.9 Treatment of organic compounds in water using photocatalytic oxidation………………………………...22
    III  MATERIALS AND METHODS.…..……....…….…………..23
    3.1 Titanium Dioxide Coating Slide……………………….…23
    3.2 Bacteria and Culture Media…………………………...….24
    3.3 Microbial Culture…………………………………….….24
    3.4 Preparation of Bacteria Suspension………………………25
    3.5 Photo-inactivation of bacteria under fluorescent light  
        or ultraviolet (UV) light irradiation………………………...25
    3.6 Time Resolution Of Photoinduced Inactivation Of Bacteria
    ………………………………………………………………..26
    IV  RESULTS AND DISCUSSION……...…..………………………33
    4.1 Group1: Group1: Loss of viability during TiO2 photocatalytic Reaction……………………………………………………33
        4.2 Group 2: Bactericidal efficacies of TiO2 coated slides with various particle sizes……………………………………..43
     4.3 Group 3: The bactericidal efficacy of TiO2 coating induced by ultraviolet light……………………………….47
      
    V CONCLUSIONS……….................................................................50
    REFERENCES…......………………….…………………...………...52

    LIST OF FIGURES
    Figure 1.1 The Solar Spectrum…………………………………………6 
    Figure 1.2 The Spectral power distributions of a household fluorescent lamp……………………………………………………….7
    Figure 2.1 Reaction mechanism of TiO2 photocatalysis………………..9
    Figure 2.2 SEM photograph of partially destroyed C. albicans on a TiO2 coated and irradiated plate………………………………..16 
    Figure 2.3 SEM photograph of C. albicans on an uncoated and irradiated control plate…………………………………....16
    Figure 2.4 The application of photocatalyst…………………………..19
    Figure 3.1 Schematic diagram of the apparatus for light irradiation…………………………………………...……27
    Figure 3.2 The household fluorescent lamp (model FL 15, white color)……...................……………………………..…….28
    Figure 3.3 The household fluorescent lamp (model FL 15, white color)…………………………………………………..…29
    Figure 3.4 The ultraviolet lamp (XLH-40W/TIO)…………………….30
    Figure 3.5 TiO2 coating slide……………………………………….…...31
    Figure 3.6 The digital light meter…...................………………..............32
    Figure 4.1 Changes of E. faecium viability during irradiation for 90 min.......................................................................................37
    Figure 4.2 Changes of S. aureus viability during irradiation for 90 min.
    .................................................................................................................38
    Figure 4.3 Changes of E. col viability during irradiation for 60 min……
    .................................................................................................................39
    Figure 4.4 Changes of P. aeruginosa viability during irradiation for 90 min......................................................................................40
    Figure 4.5 Changes of C. albicans viability during irradiation for 30 min......................................................................................41
    Figure 4.6 The decay of microbial viability during irradiation for up to 90 min (Enterococcus faecium)..........................................45
    Figure 4.7 The change of S. aureus viability during UV irradiation for 90 min…..…………………………………………….………48

    LIST OF TABLES
    Table 1.1 Mechanism of a photocatalytic process on irradiated titanium dioxide………………………………………………………5
    Table 4.1 The rate constant (k) of inactivation of five pathogens …….……………………………………………..…42
    Table 4.2 Effect of TiO2 particle size on bactericidal efficacy ………46
    Table 4.3 The rate constant (k) of inactivation of S. aureus………….49
    參考文獻 Amézaga-Madrid, P., Nevárez-Moorillón, G.V., Orrantia-Borunda, E. and Miki-Yoshida, M. (2002) Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin film. FEMS Microbiol. Lett. 211, 183 188.
    Anpo, M., Shima, T., Kodama, S. and Kubokama, Y. (1987) J. Phys. Chem. 91, 4305.
    Blake, D. M., Maness, P.- C., Huang, Z., Wolfrum, E. J. and Huang, J. (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation and Purification Methods, 28(1), 1-50.
    Bock, C., Dittmar, H., Gemeinhardt, H., Bauer, E., Greulich, K.O.,(1998) Comet assay detects cold repair of UV-A damages in human B-lymphoblast cell line.Mutat. Res. 408,111-120
    Cai, R., Hashimoto, R., Itoh, K., Kubota, Y. and Fujishima, A. (1991) Chem. Soc. Jpn. 64, 1268.
    Cho, M., Chung, H., Choi, W. and Yoon, J. (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 38, 1069 1077.
    Clovis, A., David, B. and Lisa, A. (2000) Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalysts modifications. Environ. Sci.Technol. 34, 4754-4758.
    Fujishima, A. and Honda, K. (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37.
    Fujishima, A., Rao, T.N. and Tryk, D.A. (2000) Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1 1 21.
    Hidaka, H., Horikoshi, S., Serpone, N. and Knowland, J. (1997). J.Appl.Bacteriol, 81,167
    Huang, Z., Maness, P., Blake, D.M. and Wolfrum, E.J. (2000) Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology, A: 130, 163-170
    Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M and Fennell, J. A. (1998) Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology, 32(17), 2650-2653.
    Kim, B., Kim, D., Cho, D. and Cho, S. (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere, 52, 277-281.
    Kühn, K. P., Chaberny, I. F., Massholder, K., Stickler, M., Benz, V. W., Sonntag, H. G. and Erdinger, L. (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 53, 71-77
    Linsebigler, A. L., Lu, G. and Yates, J. T. (1995) Jr. Chem. Rev. 95, 735.
    Matsunaga, T., Tomoda, R., Nakajima, T. and Wake, H. (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29, 211-214.
    Rincón, A.G. and Pulgarin, C. (2003) Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration. Appl. Catal. B Environ. 44, 263 284.
    Saito, T., Iwase, T., Horie, J. and Morioka, T. (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. Journal of Photochemistry and Photobiology, B: 14, 369-379.
    Sakai, H., Ito, E., Cai, R., Yoshioka, T., Kubota, Y., Hashimoto, K. and Fujishima, A. (1994) Biochim. Biophys. Acta 1201, 259.
    Sunada, K., Watanase, T., and Hashimoto, K. (2003) Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ. Sci.Technol. 37, 4785-4789.
    Wang, J., Uma, S., and Klabunde, K.J. (2004) Visible light photocatalysis in transition metal incorporated titania-silica aerogels. Applied Catalysis B: Environmental 48, 151-154.
    Xu, N., Shi, Z., Fan, Y., Dong, J., Shi,J., and Hu,M.Z-C., (1999) Ind. Eng. Chem. Res. 38, 373
    www.chemsoc.org
    www.env.t.u-tokyo.ac.jp/j/research/st_proc/Proc97
    www.fao.org
    www.fsec.ucf.edu/hydrogen/pdf-slides-01-2003/linkous.pdf
    www.photocatalyst.co.jp
    www.sylvania.com
    指導教授/口試委員
  • 許垤棊 - 指導教授
  • 林棋財 - 委員
  • 段國仁 - 委員
  • 口試日期 2005-06-22 繳交日期 2005-07-01


    基本檢索 | 進階檢索 | 瀏覽檢索 | 檢索歷史