首頁 > 網路資源 > 大同大學數位論文系統

博碩士論文 etd-0814107-092008 詳細資訊


姓名 涂煜杰 (Yu-chieh Tu) 電子郵件信箱 tacotojames@yahoo.com.tw
系所 材料工程學系(所) (Materials Engineering)
學位 碩士 (Master) 學年 / 學期 95 學年第 2 學期
論文名稱(中) 電漿沉積及接枝聚合丙烯醯胺膜對生物分子固定及濕度感測器之應用
論文名稱(英) Surface Immobilization of Biomolecules onto Plasma Treated and Surface Grafted Acrylamide for Humidity sensors
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內外完全公開
論文種類 碩士論文
論文語文別 / 頁數 英文 / 93
統計 已被瀏覽 3617 次,被下載 832 次
關鍵字(中)
  • UV光接枝聚合
  • 氧化錫(SnOx)有機薄膜
  • 微電子感測元件
  • 關鍵字(英)
  • SnOx organic-like films
  • UV-induced grafting polymerization
  • Microelectronic sensitive device
  • 摘要(中) 利用電漿沈積金屬氧化物有機薄膜及UV光表面接枝聚合的方式,可在無機的微電子感測元件,如氧化鋁梳型電極基板的表面,進行逐步的有機化改質,易言之可固定DNA或抗體。本研究之目的是濕度感測元件以電漿PECVD 的方式,利用TMT 與O2 混合氣體(mixtures)於梳型電極上,沉積半導性氧化錫(tin oxide organic-like thin films)有機薄膜,做為感濕材料,為了增進濕度感測效果、阻抗變化的靈敏性與穩定性,再利用UV 光接枝聚合AAm,而將胺基固定在梳行電極上,再經過一些架橋劑及增加胺基的單體溶液處理後,使梳行電極表面上可利用戊二醛來固定經過設計的含單股胺基DNA (ss-DNA) 片段或抗體等等離子性分子,在濕度改變時離子會幫助導電。研究結果顯示以TMT:O2=40:80 (mtorr)沉積膜製作感測元件,表面可固定腸炎弧菌DNA或抗體,濕度感測器最佳感測範圍RH35~95%有5 order(從107 到102 W) 的變化。
    摘要(英) The plasma deposition and surface grafting polymerization have been used to gradually formed the organic layers on inorganic substrates such as interdigital electrodes devices for single strand DNA immobilization. In this study, the semiconductive tin oxide (SnOX) organic-like thin films were deposited by PECVD of TMT and O2 mixtures on the comb-shaped electrodes as the humidity sensor devices. To improve the sensitivity and stability for humidity sensing, the surface of the deposited flims was subsequently grafted with AAm (acrylamide). Hence, GA as cross-linking reagent to chemical bonding NH2-oligonucleotide probes on the surface of interdigital electrodes. As the surface of sensitive electrodes was immobilized the single strand DNA fragment of Vibrio parahaemolyticus or antibody, ionic molecules, etc. The grafted ionic molecules film enhances the impedance variations with humidity. When surface immobilization of antigen, the results appear the best sensitive range for humidity is R.H. 35∼95%, and the impedance variations decreases by over 5 orders of magnitude from 107 to 102 W .
    論文目次 中文摘要 IV
    Abstract V
    Acknowledgement VI
    TABLE OF CONTENTS VII
    LIST OF TABLES IX
    LIST OF FIGURES X
    Chapter 1 Introduction 1
    Chapter 2 Literature Review 5
    2.1 Plasma 6
    2.2 Photo-introduce Grafting Polymerization 12
    2.3 Sensitive properties of tin oxide films 15
    2.4 Quartz crystal microbalance 17
    2.5 Vibrio parahaemolyticus 23
    Chapter 3 Experimental details 29
    3.1 Experimental flow chart 30
    3.2 Materials and reagents 31
    3.3 Equipments 33
    3.4 Sample preparation (clean up of samples) 33
    3.5 Primer and probe design 33
    3.6 Probe Immobilization 34
    3.7 Bacterial strains, DNA extraction, PCR amplification, and hybridization 35
    3.8 Property analysis and test 36
    Chapter 4 Results and Discussion 45
    4.1 The optimal condition of pretreatment for the inorganic material surface 46
    4.2 Surface Analysis 46
    4.2.1 SEM morphology 46
    4.2.2 AFM topography 47
    4.3 Wetting ability 47
    4.4 Chemical analysis 48
    4.4.1 Micro FTIR 48
    4.4.2 XPS Analysis of every strp treatment on the surface of Si-wafer 49
    4.5 QCM in DNA biosensor 50
    4.6 Film thickness and weight varied with immobilization of DNA 51
    4.7 Electric properties in interdigital electrodes 51
    4.7.1. Impedance measurement 51
    4.7.2. Impedance variations with humidity 52
    4.8 Effect of plasma treatment on cell adhesion 53
    Chapter 5 Conclusions 82
    Reference 85
    參考文獻 [1] R. M. White and F. W. Voltmer, Appl. Phys. Lett., 1965, 7, 314.
    [2] M. R. Haskard, Thick-Film Hybrids Manufacture and Design, Prentice Hall, 1988.
    [3] 宇佐美晶、三浦敬男、風見明、小池保夫、內田勝利、守下實,厚膜IC應用,東京電力一社, 1989.
    [4] 李耀霖, 厚膜電子元件, 華南理工大學出版社, 1991.
    [5] 莊達人, VLSI製造技術, 高立圖書, 1995.
    [6] W. S. Ruska, Microelectronic Processing, McGraw-Hill Book Company, 1988.
    [7] S.M. Sze, VLSI Technology, McGraw-Hill Book Company, 1983.
    [8] N. Yamazoe, Sens. Actuators B 108 (2005) 2-14.
    [9] J. Engel, J. Chen, Z. Fan, C. Liu, Sens. Actuators A 117 (2005) 50-61.
    [10] Y. Li, M.J. Yang, Sens. Actuators B 87 (2002) 184-189.
    [11] Y. Li, M.J. Yang, Synth. Met. 129 (2002) 285-290.
    [12] Y. Li, M.J. Yang, Y. She, Talanta 62 (2004) 707-712.
    [13] Prusak-Sochaczewski, E.; Luong, J. H. T.; Guilbault, G. G. Enzyme Microb. Technol. 1990, 12, 173.
    [14] Plomer. M.; Guilbault, G. G.; Hock, B. Enzyme Microb. Technol. 1992, 14.
    [15] Keijiro Nakanishi, Hitoshi Muguruma, Isao Karube, (1996) A Novel Method of Immobilizing Antibodies on a Quartz Crystal Microbalance Using Plasma- Polymerization Films for Immunosensors, Anai. Chem. 68, 1695-1700.
    [16] Bell, A. T., (1974) Fundamentals of Plasma Cheimistry. In Techniques & Applications of Plasma Chemistry (J.R. Hollan and A.T. Bell, eds.) Wiley, New York. 
    [17] Chapman, B. (1980) Glow Discharge Processes-Sputtering and Plasma Etching. Wiley, New York. (a) p. 149.
    [18] Yasuda, H. (1978), Glow Discharge Polymerization. In Thin Film Processes (J. Vossen and W. Kern, eds.) Academic, New York. P. 361.
    [19] Brian Chapman, Glow Discharge Processes-sputtering and plasma etching, John Willy & Sons.
    [20] J. Janca, L. Sodomka, (1998) Plasma-polymerized organosiloxane thin films as selective gas sensors, Surface and Coatings Technology 98, 851-854.
    [21] Emiko Uchida, Yoshikimi Uyama, Hiroo Iwata, Yoshito Ikada, (1990) XPS Analysis of Poly(ethylene Terephthalate) Film Grafted with Acrylamide, Journal of Polymer Science: Part A: polymer Chemistry 28, 2837-2844.
    [22] Nicholas Morosoff, Plasma Deposition, Treatment, and Etching of Polymers, 1. An Introduction to Plasma Polymerization, 1990 by Academic Press, Inc.
    [23] Ekaterina Radeva, (1997) Thin plasma-polymerization layers of hexamethyldisilozane for acoustoelectronic humidity sensors, Sensors and Actuators B 44, 275-278.
    [24] M.L.P. da Silva, I.H. Tan, A.P. Nascimento Filho, E. Galeazzo, D.P. Jesus, (2003) Use of plasma polymerized highly hydeophobic hezamethyldisslazane (HMDS) films for sensor development, Sensors and Actuators B91, 362-369.
    [25] Kyoichi Yamamoto, Takahiro Harada, Noritoshi Tomikawa, Haruo Uyama, Sung-Chae Yang, Hiroshi Fujiyama, (1999) Temperature measurement of polymer substrates during plasma irradiation, Thin Solid Films 345,94-98.
    [26] Zhai Maolin, Yi Min, Shu Jian, Wei Jinshan, Ha Hongfei, (1998) Radiation preparation and diffusion behavior of thermally reversible hydrogels, Radiat. Phys. Cehm. Vol. 52, Nos 1-6, 313-317.
    [27] K. S. Chen, Y. Uyama, and Y. Ikada, Oct. (1994) Adhesive Interaction between Polymer Surfaces Grafted with Water-Soluble Polymer Chain, LANGMUIR, Vol. 10, No. 4, pp.1319-1322.
    [28] K. S. Chen, S. F. Lin, and Y. Ikada, (1993) Surface-grafted Acylamide onto Plasma Depositied Films as an Interlayer for Covalently Binding Protein with Inorganics Materials, Chinese J. Medical & Biol. Eng., 13, pp. 211-218.
    [29] J. Watson, The tin oxide gas sensor and its applications. Sens. Actuators 5 (1984) 29-42.
    [30] K. Takahata, Tin dioxide sensors—development and applications, in: T. Seiyama (Ed.), Chemical Sensors Technology vol. 1 Elsevier, Amsterdam, 1988, pp. 39-45.
    [31] K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor: Principles and Applications, CRC Press. Boca Raton, FL, 1994.
    [32] W. Göpel, K.-D. Schierbaum, SnO2 gas sensors: current status and future prospects, Sens. Actuators, B 26-27 (1995) 1-12.
    [33] Roopali Srivastava, R. Dwivedi, S.K. Srivastava, Effect of oxygen and hydrogen plasma treatment on the room temperature sensitivity of SnO2 gas sensors, Microelectronics Journal 29 (1998) 833-838.
    [34] S.A. Krutovertsev, A.E. Tarasova, L.S. Krutovertseva, A.V. Zorin, Integrated multifunctional humidity sensor, Sensors and Actuators A 62 (1997) 582-585.
    [35] G. Sberveglieri, R. Murri and N. Pinto, Characterization of porous Al2O3/SiO2-Si sensor for low and medium humidity ranges, Sensors and Actuators B, 23 (1995) 177-180.
    [36] T. Kuroiwa, T. Miyagishi, A. Ito, M. Matsuguchi, Y. Sadaoka and Y. Sakai, A thin-film polysulfone-based capacitive-type relative-humidity sensor, Sensors and Actuators B, 25 (1995) 692-695.
    [37] K. Stephenson, Application of a surface conductivity moisture sensor in integrated circuit packaging, Solid Stale Technol., (June) (1980) 34-38.
    [38] C. Lu, A. W. Czanderna, (1984), Applications of Piezoelectric Quartz Crystal Microbalances, Elsevier, Amsterdam.
    [39] Raleigh, L., 1885 Quartz Piezoelectricity, in Pacy, D.J. (1960). Vacuum 9, 261.
    [40] Curie, J., Curie P., (1880) An oscillating quartz crystal mass detector, Rendu 91, 294-296.
    [41] Ebersole, R., Miller, J., Moran, J., Ward, M., (1990) PZ quartz sensors for use in clinical analysis, J. Am. Chem. Soc. 112, 3239.
    [42] Sauerbrey, G. Z., (1595) Use of quartz vibration for weighing thin films on a microbalance, J. Physik 155, 206-212.
    [43] Bruckenstein, S., Shay, M., (1994) Dual quartz microbalance oscillator circuit. Anal. Chem. 66, 1847-1855.
    [44] Kanasawa, K. K., Gordon, J. G., (1985) A liquid phase piezoelectric detector. Anal. Chem. 57, 1771-1775.
    [45] C.K. O’Sullivan, G.G Guilbault (1999) Review: Commercial quartz crystal microbalances – theory and applications. Biosensors & Bioelectronics 14, 663-670.
    [46] King, W. H. Jr. (1964), Piezoelectric Sorption Detector. Anal. Chem. 36, 1735-1741.
    [47] Guilbault, G. G., (1983) Determination of formaldehyde with an enzyme coated piezoelectric crystal. Anal. Chem. 55, 1682-1684.
    [48] Guilbault, G. G., Jirdan, j., (1988) Analytical uses of piezoelectric crystals. Analytical used of piezoelectric crystal. CRC Rev. 19, 1-28.
    [49] Xiang-Tao Mo, Yi-ping Zhou, Han Lei, Le Deng, (2002) Microbalance-DNA probe method for the detection of specific bacteria in water, Enzyme and Microbial Technology 30, 583-589.
    [50] Konash, P. L., Bastiaans, G. J., (1980) A SAW device for immunoreactions. Anal. Chem. 52, 1929-1935.
    [51] Keijiro Nakanishi, Hitoshi Muguruma, Isao Karube, (1996) A Novel Method of Immobilizing Antibodies on a Quartz Crystal Microbalance Using Plasma- Polymerization Films for Immunosensors, Anai. Chem., 68, 1695-1700.
    [52] Shons, A., Dorman, F., Najarian, J., (1972) The piezoelectric quartz immunosensor. J. Biomed. Mater. Res. 6, 565-570.
    [53] Yun, K., Kobatake, E., Haruyuma, T., Laukkaned, M., Keinanen, K., Aizawa, M., (1998) Use of a quartz crystal microbalance to monitor immunoliposome-antigen interaction. Anal. Chem. 70 (2), 260-264.
    [54] Carter, R. M., Mekalanos, J. J., Jacobs, M. B., Lubrano, G. J., Guilbault, G. G., (1996) Quartz crystal microbalance detection of vibrio cholerase. J. Immunol. Methods 187, 121-125.
    [55] Xiao Chen, Xian-En Zhang, Yi-Quan Chai, Wei-Ping Hu, Zhi-Ping Zhang, Xiao-Mei Zhang & Anthony E. G. Cass, (1998) DNA optical sensor: a rapid method for the detection of DNA hybridization, Biosensors & Bioelectronics Vol. 13. No. 3-4, pp. 451-458.
    [56] Fawcett, N. C., Evans, J. A., Chen, L. C., Drozda, K. A., Flowers, N., (1988) A quartz crystal detector for DNA. Anal. Lett. 22, 1099-1110.
    [57] Caruso, F., Rodda, E., Furlong, D., Niikura, K., Okahata, Y., (1997) Anal. Chem. 69, 2043-2049.
    [58] Nie, L., Wang, T., Yao, S., 1992a. Determination of sulfa drugs with a piezoelectric sensor. Talanta 39 (2), 155-158 ; Nie, L., Zhang, X., Yao, S., 1992b. Determination of quinine in some pharmaceutical preparations using a piezoelectric assays. J. Pharm. Biomed. 10 (7), 529-533.
    [59] Ryan KJ; Ray CG (editors), (2004). Sherris Medical Microbiology, 4th ed., McGraw Hill.
    指導教授/口試委員
  • 陳克紹 - 指導教授
  • 林啟瑞 - 委員
  • 楊木榮 - 委員
  • 楊永欽 - 委員
  • 口試日期 2007-07-12 繳交日期 2007-08-14


    基本檢索 | 進階檢索 | 瀏覽檢索 | 檢索歷史