首頁 > 網路資源 > 大同大學數位論文系統

博碩士論文 etd-0915115-114925 詳細資訊


姓名 涂永祥 (Yung-Hsiang Tu) 電子郵件信箱 tys.leader@gmail.com
系所 設計科學研究所 (Graduate Institute of Design Science)
學位 博士 (Ph.D.) 學年 / 學期 103 學年第 2 學期
論文名稱(中) 靜電式觸覺符號之設計研究
論文名稱(英) The Research and Design of Electrostatic Tactile Symbols
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內馬上公開,校外一年後公開
論文種類 博士論文
論文語文別 / 頁數 中文 / 87
統計 已被瀏覽 570 次,被下載 87 次
關鍵字(中)
  • 觸覺符號
  • 視障者
  • 觸覺辨識
  • 靜電式觸覺
  • 關鍵字(英)
  • electrostatic tactile
  • Tactile symbol
  • visually impaired people
  • tactual recognition
  • 摘要(中) 本研究針對靜電式觸覺平台進行研究與測試,瞭解電子化觸覺符號在平台上運用的可能現象。近年來的電子科技發展,原先實體式的觸覺符號有可能以電子化的形式在觸控顯示器上使用,而能夠發展為隨身攜帶的電子式觸覺地圖。本研究希望能夠對於這樣的應用方向,做進一步的了解。其研究目標有二:(一)檢視現有實體式觸覺符號的設計原則,在靜電式觸覺平台上的合適性;(二)提供靜電式觸覺符號的設計原則。
    首先,本研究先說明各式觸覺圖形的製作方式,並解說SENSEG公司發展的靜電式觸覺平台(Feel-screen),研究者取此平台進行觸覺符號的研究。前期研究先使用此平台所提供的三種質感(粗糙、紙材、平滑)測試畫面,透過實驗者的介紹並且讓使用者進行約30分鐘的試用,再以SUS問卷進行訪談,了解使用者對於靜電式觸覺方式的使用者感受。在11位無視力狀態人士(包含:2位盲眼者、6位矇眼的弱視者,平均年齡 37.6 歲,加上3位矇眼的明眼者,平均年齡 42.0 歲)的訪談意見中,全體受訪者都能夠感受到靜電式觸覺平台的觸感,其SUS的平均評量分數為38.18分,試用者希望能夠加強觸覺震動的感受度,也由於是新的觸覺體驗,使用者覺得需要時間去學習介面,研究者也發現,手指滑動的速度太快,會造成受測者感受不到觸覺震動的現象。
    其後,研究者設計三階段的實驗,了解觸覺符號設計原則在靜電式觸覺平台上的可能修正方向。第一階段實驗:「靜電式觸覺線條辨識實驗」,測試靜電式觸覺平台的最小線條辨識間距,接受試用訪談的同樣11名無視力狀態人士,在靜電式觸覺平板上重複的辨識不同平行線間距(2mm~7mm)的觸覺線條數量,實驗者紀錄受測者回報的線條數量,並轉換為「辨識正確率」,在SPSS 19.0版的重複量數變異數分析下,出現顯著性(F(5,6)=18.474, p=0.001),再由LSD事後檢定法發現,高辨識正確率群有四種(6mm、7mm、5mm、4mm),由此判定4mm時為靜電式平行線最小間距,其辨識正確率為49%,此平行間距大於實體式的兩線間距(1.9mm)。
    第二階段實驗:「靜電式觸覺符號辨識實驗」,在靜電式觸覺平台上設計有6個觸覺符號,其分別是(正方形、三角形、圓形),其符號質感也分為兩種(空心、實心),符號尺寸為9mm,受測者仍為第一階段實驗的11位人士,他們被要求於每30秒的時間內重複觸摸一個觸覺符號,實驗者紀錄其口語回應觸覺符號名稱,並且將其次數換算為辨識率。實驗結果以混淆矩陣顯示,以空心符號來看,「空心圓形」有45.5%的辨識正確率,在實心符號上,「實心三角形」則有36.4%的辨識正確率,其分別為兩種符號質感類型中,相對的高辨識正確率符號。
    第三階段實驗,「靜電式觸覺路徑模擬實驗」,另外10位視覺受損人士(包含:2位後天盲眼者、8位矇眼的弱視者,平齡 56.0 歲),在靜電式觸覺平台上,設計兩種搭配高低頻聲音的靜電式路徑線條,路徑寬度10mm,長度90mm,其中間各穿插4條叉路(寬度為3mm),受測者戴著耳機,可以聽到觸摸線條時所發出的聲音,受測者被隨機分派在路徑線上進行模擬行走,兩種路徑線都完成後,實驗者詢問其對於兩種路徑形式的相對喜好性,實驗者記錄兩種路徑形式的喜好次數,以卡方檢定雖然並未出現顯著性(p=0.58),但是80%的受測者相對喜好(低音路徑、高音叉路)的路徑設計。
    本研究的最後,再次以SUS評量表對於這10位受測者進行訪談,結果平均分數達到68.18分,顯見靜電式觸覺加上聲音之後,會受到使用者的更高評價,建議未來的發展上應該將音覺與震動覺進行匹配研究。
    本研究建議,未來的靜電式觸覺地圖,觸覺線條的間距要大於4mm,觸覺符號的形狀也應該使用邊界突顯的形狀,以低音頻聲音搭配觸覺地圖路徑線,而以高音頻聲音搭配路徑上的叉路或者觸覺地標符號,讓使用者可以憑藉著靜電式觸覺的震動與不同頻率聲音的提示,讓視力受損者可以很快地察覺到不同的物象。
    希望本研究能夠有助於電子式觸覺符號的設計,與未來電子化觸覺地圖發展,也希望能夠讓視力受損者的教育單位,建立電子化觸覺符號與地圖教育訓練的基本原則與應用範例。
    摘要(英) This research aims on testing the usability of a new developing electrostatic tactile device. Since the fast growing of electron technology, traditional tactile map can be transformed into a type of electro-tactile map in portable devices. This research has two purposes: (1) to review and check whether the design guidelines of traditional tactile map are suitable for the new electrostatic device; (2) to see the performance of the new device and to offer new possibility of design principles for the device.
    In the beginning, a survey of the new kind of electro-tactile technology is explained. One of the systems Feel-screen, developed by the SENSEG, plays as the platform to study the guidelines of electrostatic tactile symbols. In a pilot research on the new tactile device, three pictures of tactile textures, (rough surface, paper surface, smooth surface), are showed to visually impaired users and they are allowed to test the device within 30 minutes under the introduction by the experimenter. Then a SUS questionnaires are approached and an interview by the experimenter in order to know the opinions from those users. The users include 11 persons (2 blinds and 6 amblyopia that the mean age is 37.6 years, and 3 blindfolded sights with mean age of 42.0 years). Though they all described that they feel the vibrations of the graphics from the device, the mean score of SUS is 38.18. From the observation of their operation on the device, the sensation of the electrostatic vibration will be ignored by the fast finger movement on the screen.
    Later on, a three-stage of experiment is employed to realize the suitability of the guidelines of designing tactile symbols that were introduced from the physical tactile material. Firstly, electrostatic tactile parallel line experiment, those 11 users are asked to use their finger to count a serial of parallel lines that were designed at the screen of the Feelscreen. There were 6 sets of parallel lines; distances between the lines varied from 2mm to 7mm, adding 1mm a set at a time. The users were asked to count the numbers of each set of lines. The experimenter recorded the number responded from the user, and transformed it into ‘correct rate’. The mean correct rate was analyzed with repeat measurement of ANOVA in SPSS V12.0. There is a significant difference found among those mean correct rates, the Post Hoc of LSD shows that the higher score group including 6mm, 7mm, 5mm, and 4mm. The condition with gap of 4mm, correct rate of count of 49%, can be the candidate of the minimum gap between lines on the electrostatic tactile device. This gap is larger than the physical tactile material (1.9mm).
    Secondly, electrostatic tactile symbol experiment, there were 6 tactile symbols (9 mm in size) showed on the screen of the device including triangle, square, and circle, which have a different texture type (line boundary, solid shape). Those 11 users who joined the parallel test were also asked to verify those 6 symbols in a time limit of 30 seconds per symbol. The experimenter recorded the response of symbol name from the participant, and the times of all symbols were listed in a confusion matrix with recognition rate. The result finds that ‘boundary circle’ has a correct recognition rate of 45.5%, as well as the ‘solid triangle’ has a correct recognition rate of 36.4%, that are relatively higher correct recognition among each type of symbols.
    The final experiment, electrostatic tactile trail test, 10 other users, 2 late blinds and 8 amblyopia that with mean age of 56.0 years, were asked to test two trails on the screen. Each trail had a 90 mm length and 10 mm width. There were 4 cross road with 3 mm width in each trail represented the intersection trails. The different design between the two trails was the electrostatic sound paired to the tail, which was high frequency sound or low frequency sound. The participant put an earphone on and was hint to notice change of the sound when they following the trail to the end. After finishing the two simulations on the trails, participant was to choose the better design to the experimenter. Though the data shows only near the significant level (p=0.58), almost all of the users (80%) like the design that using lower frequency of sound on the main trail path and higher frequency of sound on the cross road.
    On the end, another SUS test was launched to those 10 users to see the effect of audio on the electrostatic tactile device. It shows a promising result on the mean SUS score of 68.50 that is higher than the score by only tactile information, 38.18. It is a hint that tactile and audio should be combined and well paired for those users.
    The results of this study hint that electrostatic tactile lines should have at least 4 mm of gap distance; the tactile symbols should also have prominent characteristic shape; and the main tail is preferred to paired with lower frequency of sound while the cross trail or other symbols should be paired with higher frequency of sound. In this way, the electrostatic device might be very helpful for the visually impaired person.
    Hopefully, this study will give a reference on the design of electrostatic tactile symbols and to help the development of electrostatic tactile map. And the training of using the new device might be mentioned in the education as part of basic orientation and mobility course.
    論文目次 摘要 I
    ABSTRACT IV
    謝誌 VIII
    目錄 X
    表目錄 XII
    圖目錄 XIII
    第一章 緒論 1
    1.1 研究背景 1
    1.2 研究問題 10
    1.3 研究目的 10
    1.4 研究範圍 13
    1.5 研究架構 14
    第二章 文獻探討 16
    2.1 視覺受損族群的特質 16
    2.2 觸覺能力研究 19
    2.3 觸覺符號與地圖應用 21
    2.4 電子化圖形系統 29
    2.5 靜電式觸覺平台 33
    第三章 研究方法 39
    3.1 靜電式觸覺系統之試用訪談 39
    3.2 靜電式觸覺線條辨識實驗 47
    3.3 靜電式觸覺符號辨識實驗 53
    3.4 靜電式觸覺路徑模擬實驗 61
    第四章 結果與討論 67
    4.1 靜電式觸覺系統之試用訪談 67
    4.2 靜電式觸覺線條辨識實驗 69
    4.3 靜電式觸覺符號辨識實驗 71
    4.4 靜電式觸覺路徑模擬實驗 73
    第五章 結論與建議 75
    5.1 結論 75
    5.2 建議 76
    參考文獻 78
    附錄一 靜電式觸覺系統之試用訪談記錄表 83
    附錄二 靜電式觸覺線條辨識實驗記錄表 84
    附錄三 靜電式觸覺符號辨識實驗記錄表 85
    附錄四 靜電式觸覺路徑模擬實驗記錄表 86
    附錄五 觸覺圖形的質感表現分類 87
    參考文獻 Almeida, R. & Tsuji, B. (2005). Interactive mapping for people who are blind or visually impaired. Taylor, D.R.F. (Ed.) Cybercartography: Theory and Practice, Elsevier, 411-431.
    Amick, N. & Corcoran, J. (1997). Guidelines for design of tactile graphics. New York: American Printing House for the Blind. http://www.aph.org/research/guides.htm (accessed July. 2015).
    APH, American Printing House for the Blind, http://www.aph.org/ (accessed July. 2015)
    BANA, Braille Authority of North America, (2010). Guidelines and standards for tactile graphics, http://www.brailleauthority.org/tg/web-manual/index.html (Accessd July, 2015).
    Bau, O., Poupyrev, I., Israr, A. & Harrison, C. (2010). TeslaTouch: Electrovibration for touch surface, Proceeding of UIST 2010, Oct. 3-6, 2010, New York, USA.
    Canadian Braille Authority, CBA, http://www.blindcanadians.ca/publications/cbm/5/canadian-braille-authority (accessed July. 2015)
    Cattaneo, Z., Vecchi, T., Cornoldi, C., Mammarella, I., Bonino, D., Ricciardi, E. & Pietrini, P. (2008). Imagery and spatial processes in blindness and visual impairment. Neuroscience & Biobehavioral Reviews, 32(8), 1346-1360.
    Clarke, C.R. (1993). Introduction to Thermoforming 3: Vacuum Forming. Ammanford, Dyfed: C.R.Clarke & Co. (UK) Ltd.
    Coluccia, E., Bosco, A. & Brandimonte, M. A. (2007). The role of visuo-spatial working memory in map learning: New findings from a map drawing paradigm. Psychological research, 71(3), 359-372.
    Edman, P.K. (1992). Tactile Graphics. New York: American Foundation for the Blind.
    Espinosa, M.A. & Ochaita, E. (1998). Using tactile maps to improve the practical spatial knowledge of adults who are blind. Journal of Visual Impairment and Blindness, 92, 338-345.
    Espinosa, M., Ungar, S., Ochaı́ta, E., Blades, M. & Spencer, C. (1998). Comparing methods for introducing blind and visually impaired people to unfamiliar urban environments. Journal of Environmental Psychology, 18(3), 277-287.
    Frisken-Gibson, S.F., Bach-y-Rita, P., Tompkins, W.J. & Webster, J.G. (1987). A 64-solenoid, four-level fingertip search display for the blind. Biomedical Engineering, IEEE Transactions on, (12), 963-965.
    Fujimoto, H. (2007). Toward the Accessible Society: a Commitment by Japanese Government. In International Conference on 2007 Industrial Technology Innovation~ Envision a Better Future.
    Gardiner, A. & Perkin, C. (2002). Best practice guidelines for the design, production and presentation of vacuum formed tactile maps. http://www.tactility.co.uk/tactileguidelines/page1.htm (accessed July. 2015)
    Gardiner, E.A.H. (2001). The Role of Tactile Maps in Environmental Education and Recreation in Areas of Managed Countryside. University of Manchester, PhD. Thesis.
    Gibson, J.J. (1962). Observation on active touch, Psychological Review, 69(6), 477-491.
    Gibson, J.J. (1968). The Senses Considered as Perceptual Systems. London: George Allen and Unwin Ltd.
    Gilbert C.P. (1988). Touchdown Sheepville. Australia: Royal Blind Society of New South Wales.
    Goldreich, D. & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. The Journal of Neuroscience, 2003, April 15:3439–3445.
    Grant, A. (2006). Tactile spatial acuity differs between fingers: A study comparing two testing paradigms, Perception & Psychophysics, 2006, 68 (8), 1359-1362.
    Grant, A.C., Thiagarajah, M.C. & Sathian, K. (2000). Tactile perception in blindbraille readers: a psychophysical study of acuity and hyperacuity usinggratings and dot patterns. Percept Psychophys, 62, 301–312.
    Hinton, R. (1988). New Ways with Diagrams. London: RNIB.
    Jehoel, S., Dinar, S., McCallum, D., Rowell, J. & Ungar, S. (2005). A scientific approach to tactile map design: minimum elevation of tactile map symbols. InProceedings of XXII International Cartographic Conference A Coruña 2005 proceedings, CD.
    Jehoel, S., McCallum, D., Rowell, J. & Ungar, S. (2006). An empirical approach on the design of tactile maps and diagrams: The cognitive tactualization approach. British Journal of Visual Impairment, 24(2), 67-75.
    Jehoel, S., Sowden, P.T., Ungar, S. & Sterr, A. (2009). Tactile elevation perception in blind and sighted participants and its implications for tactile map creation. Human Factors: The Journal of the Human Factors and Ergonomics Society, 51(2), 208-223.
    Johnson, K.O. & Phillips, J.R. (1981). Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of neurophysiology, 46(6), 1177-1192.
    Kaczmarek, K.A., Tyler, M.E. & Bach-y-Rita, P. (1994). Electrotactile haptic display on the fingertips: Preliminary results. Proc. 16th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 940-941.
    Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P. & Tompkins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution systems, IEEE Trans. Biomed. Eng., 38, 1–16.
    Kaklanis, N., Moschonas, P., Moustakas, K. & Tzovaras, D. (2013). Virtual user models for the elderly and disabled for automatic simulated accessibility and ergonomy evaluation of designs. Universal access in the information society, 12(4), 403-425.
    L’evesque, V. (2005). Blindness, Technology and Haptics. TR-CIM-05.08.
    Lévesque, V. & Hayward, V. (2008). Tactile graphics rendering using three laterotactile drawing primitives. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. Symposium, 429-436. IEEE.
    Lawrence, M.M., & Lobben, A.K. (2011). The design of tactile thematic symbols. Journal of Visual Impairment & Blindness, 105(10), 681-691.
    Lowenfeld, B. (1981). The blind adolescent in a seeing world. New York: American Foundation for the Blind.
    Paterson, M. (2007). The senses of touch: Haptics, affects and technologies. Berg.
    Perkins, C. & Gardiner, A. (1997). What I really, really want: how visually impaired people can improve tactile map design in ICC 97. Proceedings of 18th ICA/ACI International Cartographic Conference: Stockholm, Sweden, 23-27 June 1997, Ottoson, L. (Ed.). Stockholm: Swedish Cartographic Society. 4, 1159-1166.
    RNIB, Royal National Institute of Blind People, http://www.rnib.org.uk/ (accessed July. 2015)
    Rowell, J. & Ungar, S. (2003a). The world of touch: an international survey of tactile maps. Part 1: production. British Journal of Visual Impairment, 21, 98-104.
    Rowell, J. & Ungar, S. (2003b). The world of touch: an international survey of tactile maps. Part 2: design. British Journal of Visual Impairment, 21, 105-110.
    Rowell, J. & Ungar, S. (2005). Feeling our way: Tactile map user requirements–a survey. In Proceedings of XXII International Cartographic Conference A Coruña 2005 proceedings, CD.
    Sathian, K., Zangaladze, A., Hoffman, J.M. & Grafton, S.T. (1997). Feeling with the mind's eye. NeuroReport, 8(18), 3877-3881.
    Schiff, W. (1982). A user's view of tangible graphics: The Louisville Workshop in Tactual Perception, a Sourcebook, Schiff, W. and Foulke, E. (Eds.). Cambridge: Cambridge University Press. 430-453.
    Senseg Oy, (2015). US patent No. 8941475 B2, USA.
    Smith, A.M., Chapman, C.E., Donati, F., Fortier-Poisson, P. & Hayward, V. (2009). Perception of simulated local shapes using active and passive touch, J Neurophysiol, 102, 3519-3529.
    Stevens, R.D. & Edwards, A.D.N. (1996). An approach to the evaluation of assistive technology. Proceedings of ASSETS 1996, ACM Press, 64-71.
    Tang, H. & Beebe, D. (1998). A microfabricated electrostatic haptic display for persons with visual imairments. IEEE Transactions on Rehabilitation Engineering, 1998. 6(3), 241-248.
    TBAG, Tactile Book Advancement Group, http://www.tactilebooks.org/ (accessed July. 2015)
    Theissen, N. (2000). Computer-aided Tactual Graphics. Enfield, Australia: Royal Blind Society.
    Tu, Y.H., Ko, T.M., Huang, W.N., Jheng, S.Y., Wang, Y.L., Liao, P.C. & Hung, T.T. (2012). The effects of size and shape on the tactile symbol recognition, The Asian Conference on Psychology & the Behavioral Sciences, ACP 2012, March 29 - April 1, Osaka, Japan.
    Tu, Y.H., Liao, P.C., Liao, Y.T., Lo, H.L., Lu, W.L., Hung, T.T. & Wang, Y.L. (2011). The effects of tactile types on the identification of tactile symbols, The Asian Conference on Psychology and the Behavioral Sciences 2011, EAEFS 2011, Oct 5-8, Hsinchu, Taiwan.
    Tu, Y.H., Wu, C.F., Leung, C.Y. & Hsu, T.Y. (2007). The Shape Effects on the Tactile Perception at the Condition of Constrained Space with a Single Finger, KEER 2007, 0074.
    Tu, Y.H., Wu, C.F., Leung, C.Y. & Wang, Y.H. (2007). The Effects of Localized Space on Tactile Perception of Index Finger, APIEMS 2007, 824.
    Ungar, S., Blades, M. & Spencer, C. (1996). The Ability of Visually Impaired Children to Locate Themselves on a Tactile Map, Journal of Visual Impairment and Blindness, (90) 526-535.
    Van Boven, R.W. & Johnson, K.O. (1994). The limit of tactile spatial resolution in humans Grating orientation discrimination at the lip, tongue, and finger. Neurology, 44(12), 2361-2361.
    Vidal-Verdu, F. & Hafez, M. (2007). Graphical tactile displays for visually-impaired people. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 15(1), 119-130.
    Wang, Z., Li, N. & Li, B. (2012). Fast and independent access to map directions for people who are blind. Interacting with Computers, 24(2), 91-106.
    Wijekoon, D., Cecchinato, M., Hoggan, E. & Linjama, J. (2012). Electrostatic Modulated Friction as Tactile Feedback: Intensity Perception. In Proc. Eurohaptics Springer Berlin Heidelberg (2012), 613-624.
    World Health Organization, WHO 2014 Report on: Visual impairment and blindness. http://www.who.int/mediacentre/factsheets/fs282/en/index.html (Accessed Jun. 2015).
    Xu, C., Israr, A., Poupyrev, I., Bau, O. & Harrison, C. (2011, May). Tactile display for the visually impaired using TeslaTouch. In CHI'11 Extended Abstracts on Human Factors in Computing Systems (pp. 317-322). ACM.
    Zeng, L., Miao, M. & Weber, G. (2014). Interactive Audio-haptic Map Explorer on a Tactile Display. Interacting with Computers, iwu006.
    佐藤泰正著,陳英三譯 (1983)。視覺障礙兒童心理學,台灣省視覺障礙兒童混合教育計劃師資訓練班出版。
    吳志富,吳佳育,涂永祥 (2008)。視障者對3C 產品階層式選單系統之最佳介面設計研究,人因工程學刊,第十卷 第一期,第31-39 頁。
    呂克一 (2006)。網版發泡技術應用於視障凸體圖文媒體製作與效果之研究。國立高雄師範大學,碩士論文。
    呂昀諺 (2008)。視覺障礙者對於公共設施使用需求調查與觸覺符碼之人因評估。朝陽科技大學工業工程與管理系,碩士論文。
    涂永祥、王宏坤、吳心潔 (2010)。溝槽深度與形狀對於觸覺符號辨識的影響,第17屆人因工程學會年會暨學術研討會論文集。民國九十九年三月二十六日~二十七日,大同大學,台北市。
    涂永祥、吳志富、陳莉卿、王宏坤 (2009)。觸覺錯覺研究 – 長度錯覺,第14屆中華民國設計學會年會暨學術研討會論文集,民國九十八年五月十七日,朝陽科技大學,台中縣。
    涂永祥、陳莉卿、廖郁慈 (2010)。觸覺浮凸線的干擾點對於辨識效果的影響,第17屆人因工程學會年會暨學術研討會論文集。民國九十九年三月二十六日~二十七日,大同大學,台北市。
    涂永祥、廖郁慈、王貽玲、羅煥龍、廖珮君、洪肇廷、盧韋伶(2012)。浮凸式觸覺符號之質感與形狀辨識率影響之研究,2012 International Conference of Innovation & Design,ICID,2012。
    梁成一、莊素貞 (1999)。人行地下道觸覺地圖和點字標示牌設置位置之調查研究,中華視覺障礙教育年刊,1, 81-102。台北:中華視覺障礙教育會。
    郭為藩 (1997)。特殊兒童心理與教育,文景書局,第86-92 頁。
    郭麗玲 (1995)。我國視障圖書館研究。台北市:師大書苑。
    葉亦庭 (2004)。影響視障者觸覺圖形辨識要素之設計研究。大同大學工業設計研究所,碩士論文。
    指導教授/口試委員
  • 吳志富 - 指導教授
  • 吳俊杰 - 委員
  • 唐硯漁 - 委員
  • 莊素貞 - 委員
  • 陳立杰 - 委員
  • 口試日期 2015-07-29 繳交日期 2015-09-15


    基本檢索 | 進階檢索 | 瀏覽檢索 | 檢索歷史