首頁 > 網路資源 > 大同大學數位論文系統

博碩士論文 etd-0916115-101632 詳細資訊


姓名 李安哲 (Andrew Lee) 電子郵件信箱 不公開
系所 化學工程學系(所) (Chemical Engineering)
學位 碩士 (Master) 學年 / 學期 103 學年第 2 學期
論文名稱(中) 藉由化學侵蝕增進混相二氧化鈦之光催化性能
論文名稱(英) Advancement of Photocatalytic Activity of Mixed-phase TiO2 by Using Chemical Etching
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內外均一年後公開
論文種類 碩士論文
論文語文別 / 頁數 英文 / 84
統計 已被瀏覽 675 次,被下載 43 次
關鍵字(中)
  • 化學侵蝕
  • 二氧化鈦
  • 光催化
  • 混相
  • 關鍵字(英)
  • TiO2
  • photocatalytic
  • mixed phase
  • chemical etching
  • 摘要(中) 本研究主要探討不同結晶相混合之二氧化鈦,再以化學侵蝕方法,如硫酸、鹽酸或雙氧水-氨水加以表面改質。使用甲基橙、亞甲基藍與2,4-D水溶液作為汙染物以測量其光催化活性。使用商業化產品之純銳鈦礦與金紅石粉末在不同比例下進行混合,並與自製光催化觸媒比較其光催化活性。以XRD、SEM、UV-Vis測定光觸媒之晶體表面結構與其他特性。並使用BET測量所有樣本之比表面積。
      光觸媒的光催化活性是使用UV-Vis分光光度儀來檢測汙染物水溶液濃度之變化,並與商業光觸媒Degussa P25做比較。在銳鈦礦與金紅石以8:2比例混合時之樣品比其他方法製備的樣品有著較高的光催化活性,其原因可歸於銳鈦礦與金紅石不同結晶相之間所產生的加乘效應。
    相較於未經化學侵蝕處理過的光觸媒,使用濃硫酸進行化學侵蝕的樣品有最高的光催化活性,此結果可歸因於濃硫酸所侵蝕出較大的孔徑及較小的粒徑所造成。
    在亞甲基藍的光催化降解中,8A2R H2SO4展現與商業產品Degussa P25幾乎相同之降解活性;但在甲基橙或2,4-D之降解上則沒有。此結果可歸因於亞甲基藍的降解機構太過複雜,導致較小粒徑與較大平均孔徑的Degussa P25無法發揮其優勢。
    摘要(英) The chemical etching with mixed-phase TiO2 was used for photocatalytic degradation of methyl orange, methylene blue and 2,4-dichlorophenoxyacetic acid as pollutants under ultraviolet irradiation.
    Commercial TiO2 of anatase and rutile phases were mixed in different ratio, and compared photocatalytic activity with homemade TiO2 photocatalyst. Crystalline properties of all samples were evaluated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectra (UV-vis), and specific surface area was measured by BET method.
    The photocatalytic activity of TiO2 was measured by using UV-vis spectrophotometer to evaluate the concentration of pollutants, and compared that with commercial TiO2 photocatalyst, i.e., Degussa P25. The results showed that TiO2 with anatase and rutile ratio of 8:2 (8A2R) had the best photocatalytic activity due to the synergistic effect between anatase and rutile phases.
    TiO2 after chemical etching by sulfuric acid showed better photocatalytic activity than that without chemical etching because of increasing pore diameter resulted by the chemical etching and smaller particle size.
    In MB photocatalytic degradation by 8A2R H2SO4 has almost the same photocatalytic activity as Degussa P25 but not in 2,4-D or MO degradation because that small particle diameter and high average pore diameter of Degussa P25 cannot have the advantage to promote the complicated mechanism of photocatalytic degradation.
    論文目次 ACKNOWLEDGEMENTS i
    ABSTRACT ii
    摘要 iii
    LIST OF TABLES vii
    LIST OF FIGURES viii
    SYMBOLS xi
    CHAPTER 1 INTRODUCTION 1
    CHAPTER 2 LITERATURE REVIEW 3
    2.1 Properties and structure of titanium dioxide 3
    2.2 Basic property of semiconductor 6
    2.2.1 Semiconductor property 6
    2.2.2 The photochemical reaction of TiO2 9
    2.3 Preparation of titanium dioxide powder 13
    2.3.1 Sol-gel method 13
    2.3.2 Hydrolysis method 14
    2.3.3 Chemical vapor deposition (CVD) 14
    2.3.4 Hydrothermal method 15
    2.4 Mixed phase of TiO2 crystalline 15
    2.5 Chemical etching 16
    CHAPTER 3 EXPERIMENTAL 18
    3.1 Materials 18
    3.2 Experimental Apparatus 18
    3.3 Preparation of Titanium Dioxide Photocatalyst 23
    3.3.1 Hydrolysis-TiO2 23
    3.3.2 CH3COOH-TiO2 23
    3.3.3 H2O2-TiO2 27
    3.4 Mixing of commercial TiO2 27
    3.5 Chemical etching of TiO2 27
    3.6 Instrument for characteristic analysis of photocatalyst 31
    3.6.1 Diffuse reflectance spectra analysis 31
    3.6.2 X-Ray diffraction analysis 33
    3.6.3 Scanning electron microscopy analysis 33
    3.6.4 Brunauer-Emmett-Teller sorptometer 33
    3.6.5 Thermogravimetric analysis 33
    3.6.6 Dynamic light scattering analysis 34
    3.7 Experimental procedure 34
    3.7.1 Blank experiment 34
    3.7.2 Photolytic degradation of pollutants 34
    3.7.3 Photocatalytic degradation of pollutants 36
    3.7.4 Different sources of UV light 37
    CHAPTER 4 RESULTS AND DISCUSSION 38
    4.1 Properties of the TiO2 phocatalyst 38
    4.1.1 Hydrolysis-TiO2 38
    4.1.2 CH3COOH-TiO2 38
    4.1.3 H2O2-TiO2 38
    4.1.4 XRD properties of the prepared TiO2 photocatalyst 38
    4.1.5 UV-Visible absorption spectra of the TiO2 photocatalyst 44
    4.1.6 BET properties of photocatalyst 44
    4.1.7 SEM properties of the TiO2 photocatalyst 44
    4.1.8 TGA properties of the TiO2 photocatalyst 51
    4.1.9 DLS properties of the TiO2 photocatalyst 51
    4.2 Blank experiment 51
    4.3 Photocatalytic degradation 59
    4.3.1 Comparison with four different ratios of mixed-phase titanium oxide powder photocatalyst 59
    4.3.2 Comparison with four chemical etching titanium oxide powder photocatalysts 59
    4.3.3 Comparison with three prepared methods of titanium oxide powder photocatalyst 63
    4.3.4 Photocatalytic degradation of MB and MO by chemical etching mixed-phase TiO2 63
    4.3.5 Photocatalytic degradation of 2,4-D by using mixed-phase TiO2 70
    4.3.6 Effect of UV light 70
    4.3.7 Effect of MO initial concentration 77
    CHAPTER 5 CONCLUSION 80
    REFERENCES 82

    LIST OF TABLES
    Table 3.1 Experimental sources of materials 19
    Table 3.2 Experimental apparatus used in this study 24
    Table 3.3 Instrumental apparatus in this study 32
    Table 4.1 Specific surface area, total pore volume and average pore diameter of                                     photocatalyst 50
    Table 4.2 Particle diameter of photocatalyst (unit:mm) 57
    Table 4.3 Rate constant of 15 ppm MO photocatalytic degradation by mixed-         phase TiO2 (irradiated by 500W UV light) 61
    Table 4.4 Rate constant of 15 ppm MO photocatalytic degradation by mixed-   phase TiO2 with chemical etching (irradiated by 500W UV light) 64
    Table 4.5 Rate constant of 15 ppm MO photocatalytic degradation by prepared TiO2(irradiated by 500W UV light) 66
    Table 4.6 Rate constant of 7.5 ppm MB photocatalytic degradation by mixed- phase TiO2 with chemical etching (irradiated by 500W UV light) 71
    Table 4.7 Rate constant of 30 ppm 2,4-D photocatalytic degradation by mixed- phase TiO2 with chemical etching(irradiated by 500W UV light) 74
    Table 4.8 Rate constant of 15 ppm MO photocatalytic degradation by mixed- phase TiO2 with chemical etching(irradiated by 4W UV light) 76
    Table 4.9 Rate constant of 7.5 ppm MO photocatalytic degradation by mixed- phase TiO2 with chemical etching (irradiated by 500W UV light) 79

    LIST OF FIGURES
    Figure 2.1. Bulk structures of (a) anatase, (b) rutile and (c) brooktie (Carp et al., 2004). 4
    Figure 2.2. Illustration of titanium phase transfer (Levin et al., 1975). 5
    Figure 2.3. Schematic band energy: (a) Insulator, (b) semiconductor, (c) conductor (Sze, 1986). 7
    Figure 2.4. Simplified band diagram (Sze, 1986). 8
    Figure 2.5. Shows band gaps of common semiconducting materials (Grätzel, 2001). 10
    Figure 2.6. The TiO2 electronic excitation process (Fujishima et al., 1996). 12
    Figure2.7. Valence and conduction band alignment mechanism for the anatase/rutile interface (Scanlon et al., 2013). 17
    Figure 3.1. 500W UV light lamp. 20
    Figure 3.2. Wavelengths of 500 W UV light lamp (product information from Great Lighting Co.). 21
    Figure 3.3. Picture of the photoreactor. 22
    Figure 3.4. Schematic diagram for preparation of Hydrolysis-TiO2. 25
    Figure 3.5. Preparation of CH3COOH-TiO2. 26
    Figure 3.6. Preparation of H2O2-TiO2. 28
    Figure 3.7. Mixing of commercail TiO2. 29
    Figure 3.8. Chemical etching process. 30
    Figure 3.9. Experimental procedure in this study. 35
    Figure 4.1. Prepared sample for hydrolysis-TiO2. 39
    Figure 4.2. Prepared process for CH3COOH-TiO2(a)sol-state and (b)gel-state. 40
    Figure 4.3. Prepared process for H2O2-TiO2 41
    Figure 4.4. XRD patterns of mixed-phase TiO2 comparison. 42
    Figure 4.5. XRD patterns of prepared TiO2 comparison (Hydrolysis, H2O2 and CH3COOH method. 43
    Figure 4.6. JCPD-TiO2 of anatase phase. 45
    Figure 4.7. JCPD-TiO2 of brookite phase. 46
    Figure 4.8. JCPD-TiO2 of rutile phase. 47
    Figure 4.9. DRS patterns of pure and mixed-phase TiO2 without chemical etching. 48
    Figure 4.10. DRS patterns of prepared TiO2. 49
    Figure 4.11. SEM micrographs of Wako Anatase with different magnification at (a)x25.0k, (b)x50.0k. 52
    Figure 4.12. SEM micrographs of Wako Rutile with different magnification at (a)x25.0k, (b)x50.0k. 53
    Figure 4.13. SEM micrographs of 8A2R with different magnification at (a)x25.0k, (b)x50.0k. 54
    Figure 4.14. SEM micrographs of 8A2R H2SO4 with different magnification at (a)x25.0k, (b)x50.0k. 55
    Figure 4.15. TGA of (a)anatase, (b)rutile, (c)Degussa P25, (d)hydrolysis-TiO2, (e)H2O2-TiO2 and (f)acetic acid-TiO2 56
    Figure 4.16. The photodegradation of 15ppm MO without photocatalyst (irradiated by 500W UV light). 58
    Figure 4.17. The photocatalytic degradation of 15ppm MO by mixed-phase TiO2 (irradiated by 500W UV light). 60
    Figure 4.18. The photocatalytic degradation of 15ppm MO by chemical etching TiO2 (irradiated by 500W UV light). 62
    Figure 4.19. The photocatalytic degradation of 15ppm MO by (a) prepared TiO2 and (b) H2SO4 etching TiO2 (irradiated by 500W UV light). 65
    Figure 4.20. The photocatalytic degradation of (a)15ppm MO and (b) 7.5ppm MB by mixed- phase chemical etching TiO2 (irradiated by 500W UV light). 67
    Figure 4.21. The mechanism of photocatalytic degradation of MO (Phillips et al., 2012). 68
    Figure 4.22. Photocatalytic degradation pathway of MB (Herrmann et al., 2001). 69
    Figure 4.23. The The photocatalytic degradation of (a)15ppm MO and (b) 30ppm 2,4-D by mixed- phase chemical etching TiO2 (irradiated by 500W UV light). 72
    Figure 4.24. The possible degradation pathway of 2,4-D (Zhao et al., 2012). 73
    Figure 4.25. The photocatalytic degradation of 15ppm MO by mixed-phase chemical etching TiO2, irradiated by (a) 500W and (b) 4W UV light. 75
    Figure 4.26. The photocatalytic degradation of (a) 15ppm and (b) 7.5ppm MO by mixed-phase chemical etching TiO2 (irradiated by 500W UV light). 78
    參考文獻 Carp, O., C.L. Huisman and A. Reller, “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, 32, 33-177 (2004).
    Cushing, B.L., V.L. Kolesnichenko and C.J. O’Connor, “Recent Advances in The Liquid-phase Syntheses of Inorganic Nanoparticles,” Chemical Reviews, 104, 893-3946 (2004).
    Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at A Semiconductor Electrode,” Nature, 238, 37-38 (1972).
    Fujishima, A., I. Sopyan, M. Watanabe, S. Marasawa and K. Hashimoto, “A Film-type Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder: Photocatalytic Activity and Long-term Stability,” Journal of Electroanalytical Chemistry, 415, 183-186 (1996).
    Gao, L., Q. Zhang and J. Guo, “Effects of Calcination on The Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis,” Applied Catalysis B:Environmental, 26, 207-215 (2000).
    Grätzel, M., “Photoelectrochemical Cells,” Nature, 414, 338-344 (2001).
    Herrmann, J. M., A. Houas, H. Lachheb, M. Ksibi, E. Elaloui and C.Guillard, “Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B: Environmental, 31, 145-157 (2001).
    Kamble, S.P., S.B. Sawant and V.G. Pangarkr, “Photocatalytic Mineralization of Phenoxyacetic Acid Using Concentrated Solar Radiation and Titanium Dioxide in Slurry Photoreactor,” Chemical Engineering Research and Design, 84, 355-362 (2006).
    Kwan, C.Y. and W. Chu, “A Study of The Reaction Mechanisms of The Degradation of 2,4-dichlorophenoxyacetic Acid by Oxalate-mediated Photooxidation, ” Water Research, 38, 4213-4221(2004).
    Levin, M.E.M., C.R. Robbins and H.F. McMurdie, “Phase Diagrams for Ceramists,” The American Ceramic Society, Inc., 76, 4150-4999 (1975).
    Maness, P.C., S.Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum and W. A. Jacoby, “Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward An Understanding of Its Killing Mechanism,” Applied and Environmental Microbiology, 65, 4094-4098 (1999).
    Ohno, T., E. Bae, N. Murakami and M. Nakamura, “Effect of chemical etching by sulfuric acid or H2O2–NH3 mixed solution on the photocatalytic activity of rutile TiO2 nanorods,” Applied Catalysis A: General, 380, 48-54 (2010).
    Ohno, L.T., V.M. Zhang, Menendez-Flores, N. Murakami, “Improvement of photocatalytic activity of brookite titanium dioxide nanorods by surface modification using chemical etching,” Applied Surface Science, 258, 5803-5809 (2012).
    Phillips, D.L., W.K. Chan, L. Yu, J. Xi, M.D. Li, H.T. Chan and T. Su, “The degradation mechanism of methyl orange under photo-catalysis of TiO2,” Physical Chemistry Chemical Physics, 14, 3589–3595 (2012).
    Scanlon, D.O., C.W. Dunnill, J. Buckeridge, Shevlin, S. A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M. J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A. and Sokol, A.A. “Band alignment of rutile and anatase TiO2,” Nature Materials, 12,798–801(2013).
    SZE, S.M., “Physics of Semiconductor Devices,” (1986).
    Uekawa, N., J. Kajiwara, K. Kakegawa and Y. Sasaki, “Low Temperature Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles,” Journal of Colloid and Interface Science, 250, 285-290(2002).
    Wang, J., B. Guo, X. Zhang, Z. Zhang, J. Han and J. Wu, “Sonocatalytic Degradation of Methyl Orange in The Presence of TiO2 Catalysts and Catalytic Activity Comparison of Rutile And Anatase,” Ultrasonics Sonochemistry, 12, 331–337 (2005).
    Wu, C., X. Liu, D. Wei, J. Fan and L. Wang, “Photosonochemical Degradation of Phenol in Water,” Water Research, 35, 3927-3933 (2001).
    Zhang, H. and J.F. Banfield, “Understanding Polymorphic Phase Transformation Behavior During Growth of Nanocry Stalline Aggregates: Insights From TiO2,” Journal of Physical Chemistry C, 104, 3481-3487 (2000).
    Zhang, L., V.M. Menendez-Flores, N. Murakami and T. Ohno, “Improvement of photocatalytic activity of brookite titanium dioxide nanorods by surface modification using chemical etching”, Applied Surface Science, 258, 5803-5809 (2012).
    Zhao, G., P. Li, M. Li, T. Cao, X. Cui and D. Li, “Design And High Efficient Photoelectric-synergistic Catalytic Oxidation Activity of 2D Macroporous SNO2/1D TiO2 Nanotubes,” Applied Catalysis B : Environmental, 111-112, 578-585 (2012).
    陳仁智,“含二氧化鈦光觸媒之粒狀活性碳在液-固流體化床內去除酸性染料之研究”, 93學年碩士學位論文,大同大學化學工程研究所碩士班 (2004).
    鄭豐文, “不同方法製備TiO2於光催化降解2,4-二氯苯氧乙酸之研究”,101學年碩士學位論文,大同大學化學工程學系碩士班 (2012).
    指導教授/口試委員
  • 王榮基 - 指導教授
  • 陳泰祥 - 委員
  • 黃富昌 - 委員
  • 口試日期 2015-07-29 繳交日期 2015-09-16


    基本檢索 | 進階檢索 | 瀏覽檢索 | 檢索歷史