首頁 > 網路資源 > 大同大學數位論文系統

博碩士論文 etd-0916115-110424 詳細資訊


姓名 呂權峰 (CHUAN-FENG LU) 電子郵件信箱 leo19901011@yahoo.com.tw
系所 化學工程學系(所) (Chemical Engineering)
學位 碩士 (Master) 學年 / 學期 103 學年第 2 學期
論文名稱(中) 使用固態法製備尖晶石型鋰錳氧化物(Li1.33Mn1.67O4)對鋰跟鈷的吸附性能
論文名稱(英) Adsorption Behavior of Lithium and Cobalt with Spinel Li1.33Mn1.67O4 Prepared by Solid-State Method
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內外完全公開
論文種類 碩士論文
論文語文別 / 頁數 中文 / 93
統計 已被瀏覽 613 次,被下載 323 次
關鍵字(中)
  • 尖晶石
  • Li1.33Mn1.67O4
  • 離子置換
  • 固態合成法
  • 關鍵字(英)
  • spinel
  • solid-state method
  • ion exchange
  • Li1.33Mn1.67O4
  • 摘要(中) 尖晶石鋰錳氧化物(Li1.33Mn1.67O4, LMO)離子吸附劑係使用碳酸鋰和碳酸錳作為前驅物以高溫固態法製備而成。然後鋰錳氧化物經由0.3M的鹽酸處理。LMO經過離子置換製備之吸附劑粉末產物為氫錳氧化物(HMO)。
    由XRD、SEM、TGA-DTA和BET來確定吸附劑的晶體結構和形態。此外吸附劑的吸附性能由ICP-OES測得鈷與鋰離子濃度來進行評估。研究結果得出尖晶石鋰錳氧化物在800℃的?燒溫度下製備較其他低?燒溫度下製備的高溫固態合成方法具有較高的純相。
    在本研究中利用不同的操作條件如吸附劑裝載量,鋰和鈷離子初始濃度,溶液初始pH值和溫度的不同對於鋰和鈷離子吸附速率之影響進行探討,吸附過程符合擬二階動力式和Langmuir吸附平衡模式。
    摘要(英) Spinel Li1.33Mn1.67O4 material used as a lithium adsorbent was prepared with solid-state method using lithium carbonate and manganese carbonate as the reactants. Extraction of the Li+ from spinel Li1.33Mn1.67O4 powder was carried out with 0.3 M hydrochloric acid. After Li+ extraction, LMO converts to hydrogen manganese oxide (HMO). The compositions, crystal structures and morphologies of the prepared powders were investigated using XRD, SEM, TGA-DTA and BET.
       The adsorption performance of spinel sorbent was evaluated by ICP-OES to detect the concentrations of Li and Co. Spinel LMO prepared at calcination temperature of 800oC has higher pure-phase than those prepared at lower calcination temperatures.
       In this study, the operating conditions such as sorbent loading, initial concentration of Li+ and Co2+, initial pH value of solution and calcination temperature were investigated in batch system. The adsorption processes followed the pseudo-second-order kinetic model and Langmuir-isotherm model .
    論文目次 致謝 I
    摘要 II
    ABSTRACT III
    目錄 IV
    表目錄 VII
    圖目錄 VIII
    第一章 前言 1
    第二章 文獻回顧 4
    2.1鋰離子二次電池簡介 4
    2.1.1鋰離子二次電池的概念與發展 4
    2.1.2正極材料 7
    2.2鋰離子二次電池的回收過程 7
    2.2.1機械分離過程 10
    2.2.1.1熱處理 10
    2.2.1.2 溶解過程處理 10
    2.2.2化學處理過程 12
    2.2.2.1酸浸法 12
    2.2.2.2生物浸出 12
    2.2.2.3溶劑萃取 14
    2.2.2.4化學沉澱 14
    2.2.2.5電化學過程 14
    2.2.2.6離子交換法 17
    2.3尖晶石鋰錳氧化物簡介 17
    第3章 實驗方法 20
    3.1製備吸附劑 20
    3.1.1製備尖晶石鋰錳氧化物(LMO) 20
    3.1.2脫鋰實驗 20
    3.2實驗步驟 24
    3.2.1空白實驗 24
    3.2.2吸附實驗 24
    3.2.2吸附平衡實驗 27
    3.3吸附劑的特徵分析儀器設備 27
    3.3.1 X光射線繞射儀分析 27
    3.3.2 SEM分析 30
    3.3.3 BET分析 30
    3.3.4 TGA-DTA分析 30
    第四章 結果與討論 31
    4.1材料特徵性質 31
    4.1.1製備吸附劑 31
    4.1.2 XRD分析 34
    4.1.3 SEM分析 38
    4.1.4 BET分析 38
    4.1.5 TGA-DTA分析 42
    4.2空白試驗 45
    4.3 製備吸附劑之吸附性能 45
    4.3.1酸處理過程 45
    4.3.2初始鋰離子濃度影響 45
    4.3.3 HMO克數影響 50
    4.3.4氫氧化鈉濃度影響 50
    4.3.5溫度影響 50
    4.4吸附動力學上之研究 54
    4.4.1 Pseudo-first order kinetic model 54
    4.4.2 Pseudo-second order kinetic model 54
    4.4.3 Intraparticle diffusion model 56
    4.4.4等溫吸附模式 60
    4.5 pH值對鋰與鈷吸附之影響 70
    第五章 結論 73
    參考文獻 74
    參考文獻 Belharouak, I., Y.K. Sun, J. Liu, and K. Amine, ‘‘Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications,’’ Journal of Power Sources, 123(2), 247-252 (2003).
    Bernardes, A.M., D.C.R. Espinosa and J.A.S. Tenorino, ‘‘Recycling of batteries: a review of current processes and technologies,’’ Journal of Power Sources, 130, 291-298 (2004).
    Castillo, S., F. Ansart, C. Laberty-Robert, J. Portal, ‘‘Advances in the recovering of spent lithium battery compounds, ’’Journal of Power Sources, 112(1), 247-254 (2002).
    Cerruti, C., G. Curutchet and E. Donati, ‘‘Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans,’’ Journal of Biotechnology, 62(3), 209-219 (1998).
    Choi, S.H., J. Kim and Y.S. Yoon, ‘‘A TEM study of cycled nano-crystalline HT-LiCoO2 cathodes for rechargeable lithium batteries,’’ Journal of Power Sources, 135(1-2), 286-290 (2004).
    Contestabile, M., S. Panero and B. Scrosati, ‘‘A laboratory-scale lithium-ion battery recycling process,’’ Journal of Power Sources, 92(1-2), 65-69 (2001).
    Dorella, G., M.B. Mansur, ‘‘A study of the separation of cobalt from spent Li-ion battery residues,’’ Journal of Power Sources, 170(1), 210-215 (2007).
    Fan, J., ‘‘Studies of cylindrical cells made with doped LiNiO2 positive electrodes for military applications,’’ Journal of Power Sources, 138(1-2), 288-293 (2004).
    Feng, X., J. Sun, M. Ouyang, X. He, L. Lu, X. Han, M. Fang, H. Peng, "Characterization of large format lithium ion battery exposed to extremely high temperature," Journal of Power Sources, 272, 457-467 (2014).
    Garcia, B.J., J.P. Farcy, P. Ramos, J. Perichon, and N. Baffier, ‘‘Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries,’’ J. Power Sources, 54, 373–377 (1995).
    Gummow, R.J., A. de Kock, M.M. Thackeray, ‘‘Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells,’’ Solid State Ionics, 69(1),59-67(1994).
    Hirayama, M., H. Tomita, K. Kubota, and R. Kanno, "Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode," J. Power Sources, 196, 6809–6814 (2011).
    Jha, M.K., A. Kumari, A.K. Jha, V. Kumar, J. Hait, B.D.Pandey, " Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone," Waste Management, 33, 1890-1897 (2013)
    Kang, S.H, K. Amine, ‘‘Synthesis and electrochemical properties of layer-structured 0.5Li(Ni0.5Mn0.5)O2 - 0.5Li(Li1/3Mn2/3)O2 solid mixture,’’ Journal of Power Sources, 124(2), 533-537 (2003).
    Kang, J., J. Sohn, H. Chang, G. Senanayake, S.M. Shin, "Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method," Advanced Powder Technology, 21, 175-179 (2010a).
    Kang, J., G. Senanayake, J. Sohn, S.M. Shin, "Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272," Hydrometallurgy, 100,168-171 (2010b).
    Kim, Y.-S., H. Kanoh, T. Hirotsu, K. Ooi, ‘‘Chemical bonding of ion-exchange type sites in spinel-type manganese oxides Li1.33Mn1.67O4, ‘‘ Materials Research Bulletin, 37(2), 391-396 (2002).
    Kim, B.H., J. H. Kim, I. H. Kwon, and M. Y. Song, "Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method," Ceramics International, 33, 837–841 (2007).
    Kubo, K., M. Fujiwara, S. Yamada, S. Arai, and M. Kanda, "Synthesis and electrochemical properties for LiNiO2 substituted by other elements," J. Power Sources, 68, 553–557 (1997).
    Lama, P., R. Yazami, "Physical characteristics and rate performance of (CFx)n (0.33 < x < 0.66) in lithium batteries," J. Power Sources, 153 354–359 (2006).
    Lee, C.K., K.I. Rhee, ‘‘Preparation of LiCoO2 from spent lithium-ion batteries," Journal of Power Sources, 109(1), 17-21 (2002).
    Lee, Y.S., S. Sato, Y.K. Sun, K. Kobayakawa, and Y. Sato, "A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling," J. Power Sources,119–121, 285–289 (2003).
    Lee, J.B., J.M. Lee, S. Yoon, S.O. Kim, J.S. Sohn, K.I. Rhee, and H.J. Sohn, "Electrochemical characteristics of manganese oxide/carbon composite as a cathode material for Li/MnO2 secondary batteries," J. Power Sources, 183, 325–329 (2008).
    Liu, Y.J., Q.Y. Hu, X.H. Li, Z.X. Wang and H.J. GUO, ‘‘Recycle and synthesis of LiCoO2 from incisors bound of Li-ion batteries," Trans. Nonferrous Met. SOC. China, 16, 956-959 (2006).
    Liu, Q., D. Mao, C.K. Chang, and F.Q. Huang, “Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application," J. Power Sources, 173, 538–544 (2007).
    Mantuano, D.P., G. Dorella, R.C.A. Elias and M.B. Mansur, ‘‘Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272," Journal of Power Sources, 159(2), 1510-1518 (2006).
    Mishra, D., D.J. Kim, D. Ralph, J.G. Ahn and Y.H. Rhee, ‘‘Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans," Waste management, 28(2), 333-338 (2008).
    Murphy, D.W., F.J.D. Salvo, J.N. Carides and J.V. Waszczak, ‘‘Topochemical reactions of rutile related structures with lithium," Materials Research Bulletin, 13(12), 1395-1402 (1978).
    Myoung, J., Y. Jung, J. Lee and Y. Tak, ‘‘Cobalt oxide preparation from waste LiCoO 2 by electrochemical-hydrothermal method," Journal of Power Sources, 112(2), 639-642 (2002).
    Nan, J., D. Han, M. Yang, M. Cui, X. Hou, "Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries," Hydrometallurgy, 84, 75-80 (2006).
    Nishi,Y., ‘‘Lithium ion secondary batteries; past 10 years and the Future," J. Power Sources.100, 101–106 (2001).
    Ohzuku, T.M., Kitagawa, and T. Hirai, "Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell," J. Electrochem. Soc., 137 , 769–775 (1990).
    Padhi, A.K., K.S. Nanjundaswamy, C. Masquelier, S. Okada and J.B. Goodenough, ‘‘Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates," Journal of the Electrochemical Society, 144(5), 1609-1613(1997a).
    Padhi, A.K., K.S. Nanjundaswamy and J.B. Goodenough, "Phospho-olivin es as positive-electrode materials for rechargeable lithium batteries," J. Electrochem. Soc., 144 ,1188–1194 (1997b).
    Qiao, Y.Q., X.L. Wang, J.Y. Xiang, D. Zhang, W.L. Liu, and J.P. Tu, "Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source," Electrochim. Acta, 56, 2269–2275 (2011).
    Ryu, T., J. Shin, J. Ryu, I. Park, H. Hong, B-G Kim and K-S Chung, "Preparation and Characterization of a Cylinder-Type Adsorbent for the Recovery of Lithium from Seawater," Materials Transactions, 54, 1029-1033 (2013).
    Scrosati, B., J. Garche, "Lithium batteries: Status, prospects and futures," Journal of Power Sources, 195, 2419-2430 ( 2010).
    Shin, S.M., N.H. Kim, J.S. Sohn, D.H. Yang and Y.H. Kim, ‘‘Development of a metal recovery process from Li-ion battery wastes," Hydrometallurgy, 79, 172- 181 (2005).
    Shiratsuchi, T.S. Okada, J.I. Yamaki, S. Yamashita and T. Nishida, "Cathode performance of olivine-type LiFePO4 synthesized by chemical lithiation," J. Power Sources, 173,979–984 (2007).
    Takahashi, M., H. Ohtsuka, K. Akuto and Y. Sakurai, ‘‘Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells," Journal of the Electrochemical Society, 152(5), A899-A904 (2005).
    Tarascon, J.M., D. Guyomard, "The Li1+xMn2O4/C rocking-chair system: a review," Electrochim. Acta, 38, 1121–1231 (1993).
    Tarascon, J.M., M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, 414,359–367 (2001).
    Tian, L., W. Ma, M. Han, "Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide," Chemical Engineering Journal, 156( 1), 134-140(2010).
    Venkatraman, S., A. Manthiram, ‘‘Investigation of the possible incorporation of protons into oxide cathodes during chemical delithiation," Journal of Solid State Chemistry,177(11), 4244-4250(2004).
    Wang, J.J., Liu, G. Yang, X. Zhang, X. Yan, X. Pan and R. Wang, "Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source," Electrochim. Acta, 54, 6451–6454 (2009a).
    Wang, L., C-G. Meng, W. Ma, "Study on Li+ uptake by lithium ion-sieve via the pH technique," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334(1–3), 34-39 (2009b).
    Wang, J., M. Chen, H. Chen, T. Luo, Z. Xu, "Leaching Study of Spent Li-ion Batteries," Procedia Environmental Sciences,16,443-450(2012).
    Whittingham, M.S., ‘‘Intercalation chemistry: an introduction," Intercalation Chem., 1-18 (1982).
    Xu, J., H.R. Thomas, R.W. Francis, K.R. Lum, J. Wang and B. Liang, ‘‘A review of processes and technologies for the recycling of lithium-ion secondary batteries," Journal of Power Sources, 177, 512-527 (2008).
    Zhang, P., T. Yokoyama, O. Itabashi, T.M. Suzuki and K. Inoue, ‘‘Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries," Hydrometallurgy, 47(2-3), 259-271 (1998).
    Zhang, Y.C., H. Wang, H.Y. Xu, B. Wang, H. Yan, A. Ahniyaz, M. Yoshimura, ‘‘Low-temperature hydrothermal synthesis of spinel-type lithium manganese oxide nanocrystallites," Solid State Ionics, 158(1–2), 113-117(2003).
    鄒曉勇,“一種電解錳工業離子交換法回收鈷鎳方法”,2013發明專利申請(2013)。
    指導教授/口試委員
  • 王榮基 - 指導教授
  • 呂理平 - 委員
  • 陳泰祥 - 委員
  • 口試日期 2015-07-30 繳交日期 2015-09-16


    基本檢索 | 進階檢索 | 瀏覽檢索 | 檢索歷史