首頁 > 網路資源 > 大同大學數位論文系統

Title page for etd-0713112-215306


URN etd-0713112-215306 Statistics This thesis had been viewed 2174 times. Download 858 times.
Author Yi-Ting Huang
Author's Email Address No Public.
Department Information Management
Year 2011 Semester 2
Degree Master Type of Document Master's Thesis
Language English Page Count 35
Title A Hybrid ACO Algorithm for Capacitated Vehicle Routing Problems
Keyword
  • ant colony optimization
  • swarm intelligence
  • particle swarm optimization
  • vehicle routing problems
  • vehicle routing problems
  • particle swarm optimization
  • swarm intelligence
  • ant colony optimization
  • Abstract The vehicle routing problem (VRP) is a well-known combinatorial optimization problem. It has been studied for several decades because finding effective vehicle routes is an important issue of logistic management. This paper proposes a new hybrid algorithm based on two main swarm intelligence (SI) approaches, ant colony optimization (ACO) and particle swarm optimization (PSO), for solving capacitated vehicle routing problems (CVRP). In the proposed algorithm, each artificial ant, like a particle in PSO, is allowed to memorize the best solution ever found. After solution construction, only elite ants can update pheromone according to their own best-so-far solutions. Moreover, a pheromone disturbance method is embedded into the ACO framework to overcome the problem of pheromone stagnation. Two sets of benchmark problems were selected to test the performance of the proposed algorithm. The computational results show that the proposed algorithm performs well in comparison with existing swarm intelligence approaches.
    Advisor Committee
  • Yucheng Kao - advisor
  • Ching-Jung Ting - co-chair
  • Ming-Hsien Chen - co-chair
  • Files indicate access worldwide
    Date of Defense 2012-07-02 Date of Submission 2012-07-16


    Browse | Search All Available ETDs