首頁 > 網路資源 > 大同大學數位論文系統

Title page for etd-0727110-154401


URN etd-0727110-154401 Statistics This thesis had been viewed 1822 times. Download 1 times.
Author Hsiu-Chi Hsu
Author's Email Address No Public.
Department Chemical Engineering
Year 2009 Semester 2
Degree Master Type of Document Master's Thesis
Language Chinese&English Page Count 113
Title Effect on the performance of organic solar cell based on poly(3-hexylthiophene) and fullerene derivative with alkanethiols
Keyword
  • dodecanethiol
  • poly(3-hexylthiophene)
  • short circuit current
  • short circuit current
  • poly(3-hexylthiophene)
  • dodecanethiol
  • Abstract In this study, studies on the power conversion efficiency of bulk heterojunction (BHJ) solar cells fabricated with poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) with the addition of alkanethiol molecules acted as modifier for the influence of the kinds of alkanethiol, the amount of the alkanethiol, annealing temperature, and weight ratio of P3HT/PCBM have been carried out.
    According to the results of XRD and AFM measurements, the crystallinity of P3HT phase and the phase separation of P3HT/PCBM blends layer exhibit excellent phenomena for the addition of dodecanethiol. The optimal current density and power conversion efficiency of BHJ solar cell fabricated with P3HT/PCBM with addition of 3 mg dodecanethiol subjected to annealing treatment at 150℃ are 14.2 mA/cm2 and 1.68%, respectively.
    The mobilities of P3HT and PCBM with the addition of dodecanethiol increase an order of magnitude larger than those of intrinsic P3HT and PCBM, respectively, by Hall effect measurement. The HOMO and LUMO can be calculated by CV and UV-vis absorption spectra measurements. It is found that the energy bandgap between active layer and cathode-anode electrodes reduces by the addition of dodecanethiol. The result can enhance the charge transport for electrons and holes. Therefore, the power conversion efficiency of the P3HT/PCBM with 3 mg of dodecanethiol solar cell increases fourfold larger than that of reference devices without any additives in the photoactive layer as a consequence.
    Advisor Committee
  • Chin-Tsou Kuo - advisor
  • Shiun-Long Wu - co-chair
  • Shou-An Chen - co-chair
  • Files indicate in-campus access at 4 years and off-campus not accessible
    Date of Defense 2010-07-16 Date of Submission 2010-07-28


    Browse | Search All Available ETDs