首頁 > 網路資源 > 大同大學數位論文系統

Title page for etd-0819108-195113


URN etd-0819108-195113 Statistics This thesis had been viewed 2860 times. Download 3333 times.
Author Shih-Hsuah Hung
Author's Email Address b9106034@chu.edu.tw
Department Mechanical Engineering
Year 2007 Semester 2
Degree Master Type of Document Master's Thesis
Language zh-TW.Big5 Chinese Page Count 91
Title The Simulation of Chip Formation and Temperature in Orthogonal Metal Cutting Using ANSYS/LS-DYNA
Keyword
  • Orthogonal metal.cutting
  • Finite element analysis
  • Finite element analysis
  • Orthogonal metal.cutting
  • Abstract In this research, the finite element analysis software ANSYS/LS-DYNA is used to establish a thermo-mechanical coupling model to simulate the orthogonal metal cutting processes. With the aid of simulating the orthogonal metal cutting process, the variation of the stress, strain and temperature in the workpiece and the chip can be obtained during the chip formation. These results are useful to enhance the dimensional accuracy of the products and to improve the quality of the products. The Johnson and Cook dynamic constitutive material model is used to describe the behavior of the 0.18 % mild steel material. The chip separate criterion is based upon the failure criterion of the workpiece. Good correlation can be concluded between experimental and simulation with cutting force and the distribution of temperature. The largest effective plastic strain is located at the tool-chip interface because of the friction. The largest effective stress is located at the primary deformation zone. The shear angle in the shear plane will increase with the cutting velocity. The maximum temperature is occurred at a distance from the tool tip and on the tool-chip interface. Furthermore, the cutting velocity, rake angle, and the coefficient of friction have a great effect upon the temperature. The results were in good correlation with the theory of metal cutting.
    Advisor Committee
  • Ching-chih Tai - advisor
  • Chun-yin Wu - co-chair
  • Wen-chou Chen - co-chair
  • Files indicate access worldwide
    Date of Defense 2008-07-29 Date of Submission 2008-08-20


    Browse | Search All Available ETDs